Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 461
Filtrar
1.
Front Immunol ; 12: 766719, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917085

RESUMO

The human SFTPA1 and SFTPA2 genes encode the surfactant protein A1 (SP-A1) and SP-A2, respectively, and they have been identified with significant genetic and epigenetic variability including sequence, deletion/insertions, and splice variants. The surfactant proteins, SP-A1 and SP-A2, and their corresponding variants play important roles in several processes of innate immunity as well in surfactant-related functions as reviewed elsewhere [1]. The levels of SP-A have been shown to differ among individuals both under baseline conditions and in response to various agents or disease states. Moreover, a number of agents have been shown to differentially regulate SFTPA1 and SFTPA2 transcripts. The focus in this review is on the differential regulation of SFTPA1 and SFTPA2 with primary focus on the role of 5' and 3' untranslated regions (UTRs) and flanking sequences on this differential regulation as well molecules that may mediate the differential regulation.


Assuntos
Variação Genética/imunologia , Imunidade Inata/imunologia , Proteína A Associada a Surfactante Pulmonar/imunologia , Transcriptoma/imunologia , Regiões 3' não Traduzidas/genética , Regiões 3' não Traduzidas/imunologia , Regiões 5' não Traduzidas/genética , Regiões 5' não Traduzidas/imunologia , Sequência de Bases , Variação Genética/genética , Humanos , Imunidade Inata/genética , Proteína A Associada a Surfactante Pulmonar/genética , Proteína A Associada a Surfactante Pulmonar/metabolismo , Homologia de Sequência do Ácido Nucleico , Transcriptoma/genética
2.
Infect Genet Evol ; 93: 104929, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34022438

RESUMO

The polymorphic nature of merozoite surface protein 1(MSP1) raises doubts whether it may serve as a vaccine target against Plasmodium vivax malaria. This study analyses the impact of genetic variability on the epitope organization of different Pvmsp1 blocks. Ten blood samples collected from P. vivax infected malaria patients from West Bengal, India were used to analyze sequence and antigenic diversities of block 2 region of Pvmsp1. An additional 48 block 2 sequences from other countries were also analyzed. Global genetic framework of Pvmsp1 block 2 was represented by 12 indel clusters & 33 haplotypes (haplotype diversiy = 0.965 ± 0.024). Parasite sequences pertaining to other Pvmsp1 modules, namely block 6 and 10 displayed 14 & 29 (haplotype diversiy = 0.975 ± 0.003) and 22 & 30 indel clusters and haplotypes (haplotype diversiy = 0.947 ± 0.004), respectively. In spite of this remarkable genetic diversity, a small number of conserved epitopes were detected in all three PvMSP1 blocks. This novel finding substantiates that MSP1 could serve as a promising vaccine candidate against vivax malaria.


Assuntos
Epitopos de Linfócito B/imunologia , Variação Genética/imunologia , Vacinas Antimaláricas/imunologia , Proteína 1 de Superfície de Merozoito/imunologia , Plasmodium vivax/imunologia , Plasmodium vivax/genética
4.
Philos Trans R Soc Lond B Biol Sci ; 376(1825): 20200158, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33813886

RESUMO

Parasites threaten all free-living organisms, including molluscs. Understanding the evolution of immune defence traits in natural host populations is crucial for predicting their long-term performance under continuous infection risk. Adaptive trait evolution requires that traits are subject to selection (i.e. contribute to organismal fitness) and that they are heritable. Despite broad interest in the evolutionary ecology of immune activity in animals, the understanding of selection on and evolutionary potential of immune defence traits is far from comprehensive. For instance, empirical observations are only rarely in line with theoretical predictions of immune activity being subject to stabilizing selection. This discrepancy may be because ecoimmunological studies can typically cover only a fraction of the complexity of an animal immune system. Similarly, molecular immunology/immunogenetics studies provide a mechanistic understanding of immunity, but neglect variation that arises from natural genetic differences among individuals and from environmental conditions. Here, we review the current literature on natural selection on and evolutionary potential of immune traits in animals, signal how merging ecological immunology and genomics will strengthen evolutionary ecological research on immunity, and indicate research opportunities for molluscan gastropods for which well-established ecological understanding and/or 'immune-omics' resources are already available. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.


Assuntos
Evolução Biológica , Gastrópodes/genética , Gastrópodes/imunologia , Variação Genética/imunologia , Imunidade Inata , Seleção Genética/imunologia , Animais , Genômica
6.
Am J Clin Dermatol ; 22(3): 339-347, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33460021

RESUMO

Psoriasis is a chronic inflammatory skin condition with regional and ethnic differences in its prevalence and clinical manifestations. Human leukocyte antigen (HLA)-Cw6 is the disease allele conferring the greatest risk to psoriasis, but its prevalence is lower in Asian individuals. Recent studies have found associations between HLA-Cw1 and some Asian populations with psoriasis, especially Southern Chinese. HLA-Cw6 was associated with type I early-onset psoriasis, guttate psoriasis, Koebner phenomenon, and better response to methotrexate, interleukin (IL)-12/23, IL-17, and IL-23 targeting drugs. In contrast, HLA-Cw1 positivity has been associated with erythrodermic psoriasis, pustular psoriasis, and the axial type of psoriatic arthritis. Furthermore, HLA-Cw1 was more frequently associated with high-need patients who did not respond to conventional therapies. No known trigger factor nor autoantigen has been identified for HLA-Cw1 positivity. However, HLA-Cw1 has been linked to some viral agents. For example, cytotoxic T lymphocytes recognize multiple cytomegalovirus pp65-derived epitopes presented by HLA alleles, including HLA-C*01:02. In addition, cytomegalovirus can lead to severe exacerbation of psoriatic skin disease. The proposed interaction between viral infection, HLA-Cw1, and psoriasis is through the killer cell immunoglobulin-like receptors of natural killer cells. Given the diverse nature of psoriasis pathogenesis and the difference in HLA-Cw prevalence in different racial groups, more studies are needed to confirm the role of HLA-Cw1 in psoriasis.


Assuntos
Artrite Psoriásica/genética , Antígenos HLA-C/imunologia , Psoríase/genética , Viroses/imunologia , Alelos , Artrite Psoriásica/diagnóstico , Artrite Psoriásica/epidemiologia , Artrite Psoriásica/imunologia , Povo Asiático/genética , Comorbidade , Frequência do Gene , Predisposição Genética para Doença , Variação Genética/imunologia , Antígenos HLA-C/genética , Humanos , Células Matadoras Naturais/imunologia , Psoríase/diagnóstico , Psoríase/epidemiologia , Psoríase/imunologia , Índice de Gravidade de Doença , Pele/imunologia , Pele/patologia , Viroses/epidemiologia
7.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33408250

RESUMO

Genetic variants underlying life-threatening diseases, being unlikely to be transmitted to the next generation, are gradually and selectively eliminated from the population through negative selection. We study the determinants of this evolutionary process in human genes underlying monogenic diseases by comparing various negative selection scores and an integrative approach, CoNeS, at 366 loci underlying inborn errors of immunity (IEI). We find that genes underlying autosomal dominant (AD) or X-linked IEI have stronger negative selection scores than those underlying autosomal recessive (AR) IEI, whose scores are not different from those of genes not known to be disease causing. Nevertheless, genes underlying AR IEI that are lethal before reproductive maturity with complete penetrance have stronger negative selection scores than other genes underlying AR IEI. We also show that genes underlying AD IEI by loss of function have stronger negative selection scores than genes underlying AD IEI by gain of function, while genes underlying AD IEI by haploinsufficiency are under stronger negative selection than other genes underlying AD IEI. These results are replicated in 1,140 genes underlying inborn errors of neurodevelopment. Finally, we propose a supervised classifier, SCoNeS, which predicts better than state-of-the-art approaches whether a gene is more likely to underlie an AD or AR disease. The clinical outcomes of monogenic inborn errors, together with their mode and mechanisms of inheritance, determine the levels of negative selection at their corresponding loci. Integrating scores of negative selection may facilitate the prioritization of candidate genes and variants in patients suspected to carry an inborn error.


Assuntos
Imunidade/genética , Erros Inatos do Metabolismo/genética , Seleção Genética/genética , Genes Dominantes/genética , Genes Recessivos/genética , Variação Genética/genética , Variação Genética/imunologia , Humanos , Erros Inatos do Metabolismo/imunologia , Erros Inatos do Metabolismo/patologia
8.
Mucosal Immunol ; 14(1): 14-25, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33184476

RESUMO

Infection with respiratory viruses such as influenza, respiratory syncytial virus and coronavirus provides a difficult immunological challenge for the host, where a balance must be established between controlling viral replication and limiting damage to the delicate lung structure. Although the genetic architecture of host responses to respiratory viral infections is not yet understood, it is clear there is underlying heritability that influences pathogenesis. Immune control of virus replication is essential in respiratory infections, but overt activation can enhance inflammation and disease severity. Cytokines initiate antiviral immune responses but are implicated in viral pathogenesis. Here, we discuss how host genetic variation may influence cytokine responses to respiratory viral infections and, based on our current understanding of the role that cytokines play in viral pathogenesis, how this may influence disease severity. We also discuss how induced pluripotent stem cells may be utilised to probe the mechanistic implications of allelic variation in genes in virus-induced inflammatory responses. Ultimately, this could help to design better immune modulators, stratify high risk patients and tailor anti-inflammatory treatments, potentially expanding the ability to treat respiratory virus outbreaks in the future.


Assuntos
Citocinas/genética , Inflamação/genética , Vírus da Influenza A/imunologia , Vírus Sinciciais Respiratórios/imunologia , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/patologia , Citocinas/sangue , Variação Genética/genética , Variação Genética/imunologia , Humanos , Células-Tronco Pluripotentes Induzidas , Inflamação/patologia , Influenza Humana/imunologia , Pulmão/patologia , Pulmão/virologia , Infecções por Vírus Respiratório Sincicial/imunologia
9.
Cancer Sci ; 112(1): 61-71, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33040406

RESUMO

DNA-sensing receptor Cyclic GMP-AMP Synthase (cGAS) and its downstream signaling effector STimulator of INterferon Genes (STING) have gained significant interest in the field of tumor immunology, as a dysfunctional cGAS-STING pathway is associated with poor prognosis and worse response to immunotherapy. However, studies so far have not taken into account the polymorphic nature of the STING-encoding STING1 gene. We hypothesized that the presence of allelic variance in STING1 would cause variation between individuals as to their susceptibility to cancer development, cancer progression, and potential response to (immuno)therapy. To start to address this, we defined the genetic landscapes of STING1 in cervical scrapings and investigated their corresponding clinical characteristics across a unique cohort of cervical cancer patients and compared them with independent control cohorts. Although we did not observe an enrichment of particular STING1 allelic variants in cervical cancer patients, we did find that the occurrence of homozygous variants HAQ/HAQ and R232H/R232H of STING1 were associated with both younger age of diagnosis and higher recurrence rate. These findings were accompanied by worse survival, despite comparable mRNA and protein levels of STING and numbers of infiltrated CD8+ T cells. Our findings suggest that patients with HAQ/HAQ and R232H/R232H genotypes may have a dysfunctional cGAS-STING pathway that fails to promote efficient anticancer immunity. Interestingly, the occurrence of these genotypes coincided with homozygous presence of the V48V variant, which was found to be individually associated with worse outcome. Therefore, we propose V48V to be further evaluated as a novel prognostic marker for cervical cancer.


Assuntos
Variação Genética/genética , Proteínas de Membrana/genética , Neoplasias do Colo do Útero/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Linfócitos T CD8-Positivos/imunologia , Estudos de Coortes , Feminino , Estudos de Associação Genética , Variação Genética/imunologia , Genótipo , Humanos , Proteínas de Membrana/imunologia , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/imunologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Neoplasias do Colo do Útero/imunologia , Adulto Jovem
10.
J Med Virol ; 93(6): 3974-3979, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32869863

RESUMO

Norovirus-like particle (VLP) vaccine is promising against human norovirus infection. Unfortunately, genetic diversity of norovirus hindered the development of this vaccine. In this study, the immunogenicity of norovirus VLPs induced by the endemic GII.4 and the epidemic GII.17 genotypes, and the cross-reactivity between them as well as GI.1 and GII.3 VLPs were evaluated in mice by using serum IgG and histo-blood group antigen (HBGA) blocking antibodies as index. Results showed well immunogenicity of both GII.4 and GII.17 VLPs in mice. Serum IgG GMT (Geometric Mean Titer) were 3.63 (GII.4) and 3.88 (GII.17) respectively, and sustained to the 15th week. The HBGA blocking antibodies were 130 (GII.4) and 360 (GII.17) respectively at the end of the 4th week. Additionally, there was a dramatically statistical difference found in the cross-reactivity within genogroup (GII.3, GII.4 and GII.17) (p < .001), and also showed similar difference between genogroups (GI.1 vs. GII.3, GII.4 and GII.17) (p < .001). Summarized the pPICZa pichi pichia expression system showed a potential to be the alternative for expression of norovirus VLPs in secretion form, and the little cross-reactivity found between the endemic strain and the epidemic strain provides an evident for the consideration of selecting candidates of norovirus vaccine strains.


Assuntos
Anticorpos Antivirais/sangue , Infecções por Caliciviridae/imunologia , Reações Cruzadas/imunologia , Gastroenterite/virologia , Variação Genética/imunologia , Genótipo , Norovirus/genética , Norovirus/imunologia , Animais , Anticorpos Neutralizantes/sangue , Reações Cruzadas/genética , Doenças Endêmicas , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Organismos Livres de Patógenos Específicos , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Vacinas Virais/normas
11.
J Interferon Cytokine Res ; 40(12): 570-577, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33337935

RESUMO

Interferon Regulatory Factor-3 (IRF-3) is one of the key players in the inflammatory response mediated by the innate immune system. Although many studies have implicated a role for IRF-3 in the pathogenesis of inflammatory airway diseases, information about the possible association of IRF-3 genetic variants with asthma is scarce. We aimed to investigate the potential effects of IRF-3 polymorphisms in childhood asthma and asthma-related phenotypes. IRF-3 polymorphisms were first determined by sequencing 25 asthmatic and 25 healthy children. For further analysis, 609 asthmatic children and 191 healthy controls were screened for the genetic variants, such as rs2304204, rs2304205, rs320440, rs34739574, and rs7251. In addition, the relationship between these polymorphisms and asthma-related phenotypic features, including forced expiratory volume in one second values, eosinophil counts, and IgE levels was determined. rs7251 was associated with asthma in the codominant (P = 0.049) and G dominant (P = 0.025) model, however this significance was lost after False Discovery Rate analysis. Other investigated single nucleotide polymorphisms (SNPs) showed no significant association with asthma or asthma-related phenotypes. In conclusion, the seven SNPs of IRF-3 gene are not associated with asthma or asthma-related phenotypes in Turkish asthmatic children.


Assuntos
Asma/genética , Fator Regulador 3 de Interferon/genética , Adolescente , Asma/imunologia , Criança , Feminino , Variação Genética/genética , Variação Genética/imunologia , Humanos , Fator Regulador 3 de Interferon/imunologia , Masculino
12.
Curr Opin Immunol ; 65: 83-88, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32745736

RESUMO

The goal of translational medicine is to use an improved understanding of human biology to develop new clinical approaches. Immune responses are highly variable from one person to another, with this variability strongly impacting clinical outcome. Variable immunity can determine differential risks for infection, for development of autoimmunity, and for response to therapeutic interventions. Therefore, a better understanding of the causes of such differences has huge potential to improve patient management through precision medicine strategies. Variability in immunity is determined by intrinsic (e.g. age, sex), extrinsic (e.g. environment, diet), and genetic factors. There is a growing consensus that genetics factors account for 20-40% of immune variability between individuals. The remaining unexplained variability is likely due to direct environmental influences, as well as specific gene-environmental interactions, which are more challenging to quantify and study. However, population based cohort studies with systems immunology approaches are now providing new understanding into these associations.


Assuntos
Sistema Imunitário/imunologia , Pesquisa Translacional Biomédica , Variação Genética/genética , Variação Genética/imunologia , Humanos , Medicina de Precisão
13.
Curr Opin Immunol ; 65: 74-78, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32634755

RESUMO

The immune system is paradigmatic for a complex arrangement of heterogenous cells performing distinct, frequently temporally and anatomically dissociated, functions. Immune dysfunction is a common characteristic across most diseases and human genetic approaches have revealed that many disease risk loci are associated with expression profiles and counts of specific immune subsets. Furthermore, genetic regulators of immune function may only demonstrate activity in specific disease-linked contexts. Here we explore steps taken to dissect the genetic determinants of variation in immune response across cell counts and function, and the insights these have provided into human immunity.


Assuntos
Sistema Imunitário/imunologia , Imunidade/imunologia , Variação Genética/genética , Variação Genética/imunologia , Humanos , Imunidade/genética
14.
J Immunol ; 205(5): 1406-1418, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32661180

RESUMO

STAT proteins can regulate both pro- and anti-inflammatory cytokine signaling. Therefore, identifying consequences of modulating expression of a given STAT is ultimately critical for determining its potential as a therapeutic target and for defining the mechanisms through which immune-mediated disease variants in STAT genes contribute to disease pathogenesis. Genetic variants in the STAT1/STAT4 region are associated with multiple immune-mediated diseases, including inflammatory bowel disease (IBD). These diseases are characterized by dysregulated cytokine secretion in response to pattern-recognition receptor (PRR) stimulation. We found that the common IBD-associated rs1517352 C risk allele increased both STAT1 and STAT4 expression in human monocyte-derived macrophages (MDMs). We therefore hypothesized that the STAT1/STAT4 variant might regulate PRR-initiated responses in a complementary and cooperative manner because of the important role of autocrine/paracrine cytokines in modulating PRR-initiated signaling. STAT1 and STAT4 were required for PRR- and live bacterial-induced secretion of multiple cytokines. These outcomes were particularly dependent on PRR-initiated autocrine/paracrine IL-12-induced STAT4 activation to generate IFN-γ, with autocrine IFN-γ then signaling through STAT1. STAT1 and STAT4 also promoted bacterial-induced cytokines in intestinal myeloid cells and PRR-enhanced antimicrobial pathways in MDMs. Importantly, MDMs from rs1517352 C IBD risk allele carriers demonstrated increased TLR4-, IFN-γ- and IL-12-induced STAT1 and STAT4 phosphorylation and cytokine secretion and increased TLR4-enhanced antimicrobial pathways. Taken together, STAT1 and STAT4 expression is coregulated by a shared genetic region, and STAT1 /STAT4-immune disease-associated variants modulate IFN-γ- and IL-12-associated outcomes, and in turn, PRR-induced outcomes, highlighting that these genes cooperate to regulate pathways relevant to disease pathogenesis.


Assuntos
Predisposição Genética para Doença/genética , Variação Genética/imunologia , Macrófagos/metabolismo , Receptores de Reconhecimento de Padrão/genética , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT4/genética , Alelos , Linhagem Celular , Citocinas/genética , Expressão Gênica/genética , Humanos , Doenças Inflamatórias Intestinais/genética , Interferon gama/genética , Interleucina-12/genética , Células Mieloides/metabolismo , Fosforilação/genética , Transdução de Sinais/genética
15.
Arch Virol ; 165(8): 1749-1757, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32435857

RESUMO

The aim of this study was to assess the vaccine-matching and antigenic properties of foot-and-mouth disease virus (FMDV) isolates collected from Ethiopia between 2011 and 2014. Samples (n = 51) were collected from cattle and pigs with clinical signs consistent with foot-and-mouth disease (FMD) on farms in Debre-Berhan, Debre-Zeit/Bishoftu, Sidamo, Mekelle, and Addis Ababa. Infectious FMDV was isolated using BHK-21 cell cultures from 38 of the 51 field samples (74.5%). All of these FMDV-positive samples were characterized as serotype O, belonging to two East Africa topotypes (EA-3 and EA-4), and their VP1-encoding sequences demonstrated amino acid sequence variability encompassing 27 positions in comparison to the vaccine strain (O/ETH/38/2005) currently provided by the National Veterinary Institute of Ethiopia. One-dimensional virus neutralization test (1 dm VNT) results showed that O/ETH/38/2005 was antigenically matched to 10 of the 16 serotype O viruses. These findings indicate that the O/ETH/38/2005 vaccine strain can provide protection against outbreaks caused by the O/EA-3 topotype, although poorer vaccine-matching results for the O/EA-4 topotype reinforce the importance of using a good-quality vaccine with high coverage in the susceptible herds with supporting post-vaccination serosurveillance to ensure that sufficient antibody titers are generated in the vaccinated animals.


Assuntos
Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/imunologia , Variação Genética/genética , Vacinas Virais/imunologia , Animais , Bovinos , Doenças dos Bovinos/imunologia , Surtos de Doenças/veterinária , Etiópia , Febre Aftosa/imunologia , Febre Aftosa/virologia , Variação Genética/imunologia , Filogenia , Sorogrupo , Suínos
16.
Nat Commun ; 11(1): 1237, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144282

RESUMO

Genome-wide association studies have associated thousands of genetic variants with complex traits and diseases, but pinpointing the causal variant(s) among those in tight linkage disequilibrium with each associated variant remains a major challenge. Here, we use seven experimental assays to characterize all common variants at the multiple disease-associated TNFAIP3 locus in five disease-relevant immune cell lines, based on a set of features related to regulatory potential. Trait/disease-associated variants are enriched among SNPs prioritized based on either: (1) residing within CRISPRi-sensitive regulatory regions, or (2) localizing in a chromatin accessible region while displaying allele-specific reporter activity. Of the 15 trait/disease-associated haplotypes at TNFAIP3, 9 have at least one variant meeting one or both of these criteria, 5 of which are further supported by genetic fine-mapping. Our work provides a comprehensive strategy to characterize genetic variation at important disease-associated loci, and aids in the effort to identify trait causal genetic variants.


Assuntos
Doenças Autoimunes/genética , Loci Gênicos/genética , Estudo de Associação Genômica Ampla/métodos , Herança Multifatorial/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Linhagem Celular Tumoral , Predisposição Genética para Doença , Variação Genética/imunologia , Haplótipos/genética , Haplótipos/imunologia , Humanos , Desequilíbrio de Ligação , Herança Multifatorial/imunologia , Estudo de Prova de Conceito
17.
PLoS Genet ; 16(2): e1008549, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32012164

RESUMO

Recent human genetic studies suggest that cells of the innate immune system have a primary role in the pathogenesis of neurodegenerative diseases. However, the results from these studies often do not elucidate how the genetic variants affect the biology of these cells to modulate disease risk. Here, we applied a tensor decomposition method to uncover disease associated gene networks linked to distal genetic variation in stimulated human monocyte and macrophage gene expression profiles. We report robust evidence that some disease associated genetic variants affect the expression of multiple genes in trans. These include a Parkinson's disease locus influencing the expression of genes mediated by a protease that controls lysosomal function, and Alzheimer's disease loci influencing the expression of genes involved in type 1 interferon signaling, myeloid phagocytosis, and complement cascade pathways. Overall, we uncover gene networks in induced innate immune cells linked to disease associated genetic variants, which may help elucidate the underlying biology of disease.


Assuntos
Doença de Alzheimer/genética , Predisposição Genética para Doença , Modelos Genéticos , Doença de Parkinson/genética , Locos de Características Quantitativas/imunologia , Doença de Alzheimer/imunologia , Linhagem Celular , Mapeamento Cromossômico , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/imunologia , Variação Genética/imunologia , Estudo de Associação Genômica Ampla , Humanos , Imunidade Inata/genética , Interferon gama/imunologia , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Doença de Parkinson/imunologia
18.
Vet Res ; 51(1): 9, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024546

RESUMO

Genetic variation is associated with differences in disease resistance and susceptibility among individuals within a population. To date, molecular genetic analyses of host responses have relied on extraction of genomic DNA from whole blood or tissue samples. However, such samples are not routinely collected during large-scale field studies. We demonstrate that cell-free genomic DNA (cfDNA) may be extracted and amplified from archived plasma samples, allowing retrospective analysis of host genetic diversity. This technique was also applicable to archived serum samples up to 35 years old and to different ruminant species. As proof of concept, we used this cfDNA approach to genotype the major histocompatibility complex (MHC) class II DRB1 locus of 224 Merino sheep which had participated in field trials of a commercial Haemonchus contortus vaccine, Barbervax®, in Australia. This identified a total of 51 different DRB1 alleles and their relative frequencies. This is the first study to examine host MHC diversity using DNA extracted from archived plasma samples, an approach that may be applied to retrospective analyses of genetic diversity and responses to vaccination or infection across different species and populations.


Assuntos
Variação Genética/imunologia , Hemoncose/veterinária , Doenças dos Ovinos/prevenção & controle , Vacinação/veterinária , Vacinas/imunologia , Animais , Austrália , Hemoncose/parasitologia , Hemoncose/prevenção & controle , Haemonchus/imunologia , Plasma/imunologia , Estudos Retrospectivos , Soro/imunologia , Ovinos , Doenças dos Ovinos/parasitologia , Vacinas/administração & dosagem
19.
Virus Genes ; 56(2): 109-119, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32026198

RESUMO

The nomenclature of the hepatitis B virus (HBV) genes and their products has developed stepwise, occasionally in an erratic way, creating many misunderstandings, especially among those who do not know the structure of HBV and its genome in detail. One of the most frequent misunderstandings, even presented in leading journals, is the designation of HBV "e"-antigen as envelope or early antigen. Another problem area are the so-called "pre" regions in the HBV genome present upstream of both the core and the surface genes of HBV, inadvertently suggesting that they may be a part of corresponding precursor proteins. Misnomers and misclassifications are frequent in defining the subgenotypes and serological subtypes of HBV. Even the well-established terminology for HBV surface (HBs) or HBV core (HBc) antigen deviates from the conventional virological nomenclature for viral envelopes or capsid proteins/antigens, respectively. Another matter of undesirable variability between publications is the numbering of the nucleotides and the graphical representation of genomic maps. This editorial briefly explains how the nomenclature evolved, what it really means, and suggests how it could be adapted to today's knowledge.


Assuntos
Anticorpos Anti-Hepatite B/imunologia , Antígenos E da Hepatite B/imunologia , Vírus da Hepatite B/imunologia , Hepatite B/imunologia , Epitopos/genética , Epitopos/imunologia , Variação Genética/genética , Variação Genética/imunologia , Hepatite B/genética , Hepatite B/virologia , Anticorpos Anti-Hepatite B/classificação , Antígenos do Núcleo do Vírus da Hepatite B/classificação , Antígenos do Núcleo do Vírus da Hepatite B/imunologia , Antígenos de Superfície da Hepatite B/classificação , Antígenos de Superfície da Hepatite B/imunologia , Antígenos E da Hepatite B/classificação , Vírus da Hepatite B/patogenicidade , Humanos , Terminologia como Assunto
20.
Int Rev Immunol ; 39(1): 21-36, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31707873

RESUMO

Annual flu led by influenza viruses is contemplated to be one of the foremost global health challenges due to its rapid spread leading to the life-threatening epidemic or pandemic. An enormous number of people die due to flu and its associated intricacies every year. Annual vaccination is considered to be the gold standard strategy to protect the individual from acquiring infection and further decimation, although recent estimates suggest that overall flu vaccine effectiveness was within 19% to 53% in last five years. A significant weakness of current vaccination is its inability to protect an individual from different or mutant flu strain. Host immune system performs a vital role during natural infection or after vaccination leading to influenza-specific immunities. Previous imprints of common flu or vaccination may alter the outcomes of the current vaccination. Current flu vaccine regime does not consider the host immune status before vaccination. Irrespective of the previous influenza exposure history or prior flu vaccination, individual get flu vaccination based on WHO recommendation with selected strains which may be the reason why induction of broad immunities does not transpire with their testimonial. Over the last few decades, scientific research had identified the role of preexisting immunities on vaccination or natural infection outcome. In this review, we are proposing the concept of personalized flu vaccines depending on individual immune status. We will also discuss why individual was unable to induce broader immunities to protect itself from diverse influenza viruses and how we can accomplish that goal with the current findings.


Assuntos
Variação Genética/imunologia , Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Vacinação/estatística & dados numéricos , Variação Genética/genética , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/virologia , Imunidade/imunologia , Vírus da Influenza A/genética , Vacinas contra Influenza/administração & dosagem , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Pandemias/prevenção & controle , Medicina de Precisão/métodos , Vacinação/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...